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Figure 1: Icon editing with Lillicon. Starting from an input icon of a building (a), we use our system, Lillicon, to create a scale variation (b)
that is more legible at small sizes (left). With Lillicon, we apply transient widgets to select and manipulate visually apparent features, like the
“stroke” in (c). Creating this result involves thickening, translating, deleting strokes and adjusting contours (d). In total, these edits took less
than four minutes to perform in Lillicon. The result differs from the input in several ways (e) that improve its legibility at the target size.

Abstract

Good icons are legible, and legible icons are scale-dependent. Ex-
perienced icon designers use a set of common strategies to create
legible scale variations of icons, but executing those strategies with
current tools can be challenging. In part, this is because many
apparent objects, like hairlines formed by negative space, are not
explicitly represented as objects in vector drawings. We present
transient widgets as a mechanism for selecting and manipulating
apparent objects that is independent of the underlying drawing rep-
resentation. We implement transient widgets using a constraint-
based editing framework; demonstrate their utility for performing
the kinds of edits most common when producing scale variations of
icons; and report qualitative feedback on the system from profes-
sional icon designers.

CR Categories: I.3.7 [Computer Graphics]—;

Keywords: downsampling, design tools, artist tools, vector graph-
ics, constraint-based drawing, icons

1 Introduction

Icon design is a communication challenge. In part, this means
choosing effective and appropriate symbols to convey an idea. But
it also means making sure the depictions of those symbols are visu-
ally pleasing, consistent with other icons, and most of all legible. A
significant component of this task is ensuring that all of these prop-
erties hold across the wide range of scales at which icons may be
viewed. For example, an icon that represents a software application
typically appears at several different sizes in different contexts —
as a file icon, in toolbars, and in an online marketplace on a range
of different platforms. In addition, icons may be viewed on devices
with different display densities that induce different physical view-
ing sizes.

Simple uniform scaling of icons does not suffice to produce
effective, legible icons at all viewing scales. In the inline
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scroll example, the hairlines that delineate the top and bot-
tom folds of the script disappear as the icon is scaled down
uniformly. A similar effect arises if you hold this paper
far enough away or take off glasses you may be wearing.
To prevent such problems, designers adjust the
proportions, spacing, and level-of-detail of icons
to produce multiple scale variations that are suited
for display at different target sizes.

The need for non-uniform scale variations is fun-
damental, despite profound changes in display
technology. Recently, the proliferation of display
devices in an increasing range of sizes, aspect ra-
tios and pixel densities has been driving designers
to adopt new practices to cope with this diversity
while preserving the legibility and aesthetic qual-
ity of their designs. Nonetheless, neither the switch from raster to
vector formats, nor the increasing saturation of users’ visual field by
high-density displays will remove fundamental visual acuity limits
(which vary with eyesight and viewing conditions). Nor will they
eliminate the need to display icons in different parts of an applica-
tion. Consequently, in carefully designed icon sets, designers will
continue to hand craft scale variations to ensure legibility across all
viewing situations.

While experienced icon designers are proficient at identifying the
types of edits that are necessary to create effective scale variations,
the process of executing such edits is often tedious. We observed
two main difficulties. First, the relevant feature of the drawing that
the designer wants to edit may not be conveniently exposed as a ma-
nipulable object. For example, in the script icon, the hairlines are
defined as negative space outside of the filled black shape. There is
no path, and thus no width parameter to edit. Second, any individ-
ual edit may require numerous secondary edits to preserve impor-
tant properties of the drawing. These issues distract designers by
focusing them on how to perform manipulations rather than which
manipulations to perform. As a result, creating a single scale vari-
ation of one icon may require several minutes of manual editing.
When creating variations for hundreds or thousands of icons used
in an interface, these inefficiencies add up. For example, creating
variations for an application with 500 icons at a rate of 3 minutes
per edit results in 25 hours of expert designer work.

We propose transient widgets as a means of editing vector drawings
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Figure 2: Strategies used by expert designers to create scale variants in the Iconic responsive icon set.

that addresses the challenges of creating scale variations (Figure 1).
Transient widgets allow users to select and edit relevant features of
drawings as if they were objects, but without worrying about the
details of how the drawing is actually represented. If some portion
of the drawing looks like a line or blob that the user wants to thicken
or remove, then a transient widget helps them do that independently
from how the drawing was constructed. In this sense, transient wid-
gets enable users to interact with interpretations of a drawing in
whichever way is most convenient for the edits they want to make.
Our prototype system Lillicon implements transient widgets using a
constraint-based drawing engine, providing three proof-of-concept
widgets: blobs, strokes, and rectangles. Blobs and strokes in par-
ticular were chosen to capture common icon scaling strategies.

Contributions. In this paper, we identify, characterize and study
the icon scaling task. We propose the concept of transient wid-
gets, along with a means of implementation using a constraint-
based editing engine. Finally, we perform an informal qualitative
evaluation of our system with professional icon designers that both
confirms major design decisions, and suggests that representation-
independent editing tools resonate with designers.

2 The Icon Scaling Task

To better understand the task of creating icon scale variations, we
conducted some formative research into (1) how icon scaling fits in
the overall icon design process, (2) what strategies designers typ-
ically use to create scale variations, and (3) what obstacles arise
when executing those strategies. We restrict our investigation to
black-and-white icons represented as vector graphics. While many
icons include color, such icons can often be expressed as color-
ings of underlying black-and-white designs, which suggests that
our findings should generalize beyond this restriction.

2.1 Icon Design Process

We asked several professional icon designers to describe their de-
sign process. Based on these discussions, we identified three basic
stages in the creation of an interface icon. First, the designer brain-
storms, consults with clients, and sketches out design ideas using
paper, whiteboards, and other media appropriate for rapid iteration.
Once she converges on the basic design, the designer switches to
computer tools (e.g. a vector graphics editor) to turn sketches into
a more polished, production-ready graphic. Finally, given a high-
production-quality icon, the designer prepares the different asset
versions required by clients, of which scale variations are the most
common. At the time of writing, an iOS App icon is required [iOS ]
to support 10242px, 1802px, 1522px, 1202px, and 762px versions.
Guidelines also recommend the preparation of 1202px, 802px and
402px versions to display with search results, and yet more vari-
ations for use in settings, the toolbar and tab bar. These require-

Figure 3: The Icon Scaling Task. Given large detailed icons, pro-
duce versions suitable for display at a smaller size. (worker by Bart
Laugs CC BY 3.0; all others Iconic)

ments are often most easily satisfied by starting with an icon at
the largest desired size (e.g., 1282px) and editing it to produce a
range of smaller scale variations (e.g. 962px, 642px, 482px, 322px,
162px). While we present three distinct stages, in practice design-
ers may both revisit and re-iterate earlier stages as client demands
change and anticipate later stages, building icons so that scale vari-
ations are easier to produce.

In this work, we address the third stage of the icon design process,
which primarily involves editing of an existing icon design rather
than creating the design from scratch. As a result, the tools we
describe later in the paper focus on manipulating existing rather
than drawing new geometry.

Yes No

Figure 4: To simplify our investigation and prototype, we focused
on black-and-white vector icons, excluding color and raster. (3d
printer by Freepik, compass by designmodo, crystal by aha-soft, all
CC BY 3.0)
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2.2 Scale Variation Strategies

To identify effective strategies for scaling icons, we examined
Iconic[Ico ], a popular set of responsive vector icons. Iconic pro-
vides 3 standard sizes (lg, md, sm) for each of the 193 icons in their
set. In addition to Iconic, we collected a set of around 5.5K vector
icons from various online sites (dominantly flaticon.com and icon-
solid.com) each of which came with only a single scale variation.

By applying zoom and downscaling operations to the icons in our
dataset, we were able to observe when and how icons become il-
legible at small sizes. As icons shrink, several problems arise: hair-
lines (thin lines that are often only a pixel or two wide) and other
small features (e.g., dots, stars) fade and disappear; complex sil-
houette and contour patterns become difficult to resolve; repeated
elements blur and merge together. These scaling problems result in
icons that appear shoddy/unprofessional and may cause eye strain
for viewers. In some cases, the loss of a single critical hairline or
important detail can have a significant impact on the recognizability
of the icon.

To prevent these problems, the designers of Iconic employ a few
key strategies. The most common technique is to make important
hairlines and features thicker/larger to ensure that they remain vis-
ible as the icon shrinks. In conjunction, unessential hairlines and
features are removed to reduce visual clutter. We observed thicken-
ing, enlarging or deleting of at least one feature in 65% of the Iconic
dataset. Less common strategies include abstracting icon contours
to exaggerate critical details and remove unnecessary ones (14%),
and reducing the number of repetitions in icons with repeated ele-
ments so that individual elements appear larger (12%).

In addition to these adjustments, most of the smaller size Iconic
icons are edited so that their contours line up as much as possible
with the underlying pixel grid (71%). This type of “pixel hinting”
for icons is analogous to font hinting [Shamir 2003] for type; the
goal is to amplify contrast and legibility at small scales by max-
imizing the number of pixels that are either 100% “on” or “off.”
While many interface icons today are still pixel hinted, such opti-
mizations are likely to become less important as consumers adopt
high density screens, such as Apple’s Retina Display, shifting focus
back to fundamental visual acuity limits. Specifically, note that
an average viewer with 20/20 eyesight has an angular resolution of
about 1 arcminute in their fovea, which translates to a spatial reso-
lution of approximately 300PPI when viewing a document at 12 in.
The latest phone displays from Apple have a resolution of 400PPI,
making it unlikely for viewers to resolve at the scale at individual
pixels under normal viewing conditions. Beyond the scope of this
paper, we should expect common wisdom among graphic designers
to undergo heavy revision as high density displays become the de
facto standard.

2.3 Creating Scale Variations with Existing Tools

To gain insight into the actual process of applying the aforemen-
tioned scale variation strategies, we attempted to manually scale
down several icons using Adobe Illustrator as a representative vec-
tor graphics editing tool. Creating scale variations primarily in-
volved editing paths using the Bezier curve (aka. pen) tool in con-
junction with selection techniques. Occasionally the uniform scal-
ing tool was helpful, though infrequently. Most editing consisted of
dragging anchors and control points to reposition them.

In general, while identifying which editing strategies to apply was
straightforward, executing those actions was tedious. That is, it was
easy to point and say “that line should be widened,” but it was rel-
atively difficult to execute the desired action. Two major obstacles

Figure 5: Visually apparent lines/features that a user may wish to
edit are highlighted. Notice that these lines appear both as portions
of objects (cyan) and in the negative space between other objects
(magenta). (bus by Freepik CC BY 3.0)

Figure 6: Suppose a user drags the indicated control point (left)
downwards. In most editors the result is to modify only that control
point (middle). However, this means the user is likely going to need
to drag an additional 6 control points (magenta, right) in order
to restore apparent properties of the original drawing: a straight
horizontal contour and semicircular contour.

hampered us. First, a naive assumption was that we could sim-
ply select the path corresponding to a line and increase the width
parameter. However, most lines in need of thickening were not
represented as lines. They were simply regions between contour
paths that arose in both the positive and negative space of an im-
age. Second, as we resorted to dragging control points, we realized
that each change tended to induce a series of requisite secondary
edits/actions. For instance, semicircular endcaps are common, but
if the base of the semicircle is widened, at least 5 control points
now need individual repositioning—usually > 5 actions in order to
tweak the object until it looks right again. At some point, this effort
becomes great enough that reconstructing parts of the drawing from
scratch starts to seem more attractive.

Figure 7: As an extreme example of these principles, suppose we
want to widen the gaps in this circular icon as indicated. Illustrat-
ing obstacle 1, the negative space cannot ordinarily be selected.
Illustrating obstacle 2, the arc-ness of contours will not normally
be preserved. (circular121 by Freepik CC BY 3.0)

3 Transient Widgets

The idea for transient widgets comes from a subtle critique of
vector/object-based drawing tools. In conventional object/vector-
graphics tools like Adobe Illustrator, Microsoft PowerPoint, or Ap-
ple Keynote, drawings are represented as a composition of param-
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?

appearance representation easy edits

Figure 8: Most vector/object-based editors subtly violate the
WYSIWYG principle. This trapezoidal grid could be built either
out of four disjoint or out of 3 layered quadrilaterals; the user
cannot determine which without interacting. Depending on which
representation was used, different manipulations are more readily
afforded.

eterized objects, layered in a given depth order. These parameters
(e.g. Bezier control points, circle center and radius, etc.) are then
exposed via sidebar sliders, textboxes or manipulators directly su-
perimposed on the drawing. As a result, these systems implicitly
identify the interpretation with the representation of a drawing. For
the purposes of editing users are compelled to commit to a canon-
ical interpretation of the drawing arising from the way they chose
to construct it. Put another way, the affordances (means of control
like sliders, handles, values) provided to the user are implicitly ori-
ented towards this one canonical interpretation/representation. As
illustrated in § 2.3, it is precisely the gap between a user’s desire
to manipulate an apparent object and the objects represented in a
document that makes the execution of scaling strategies difficult.

Transient widgets then, are an attempt to support an object-less ed-
itor, while also retaining and extending the benefits of object-based
editing. A transient widget is temporary, rather than permanent;
ancillary, rather than constitutive; an augmentation, rather than a
building block; an interpretation rather than a representation. We
define a transient widget as

a selection of some portion of a drawing, which can re-
liably be interpreted to have (1) measurable parameters
and (2) methods of being manipulated/modified.

To throw this definition into relief, consider trying to apply it to
standard multi-selection operations. For instance, a vector graph-
ics editor that allows users to evenly, horizontally distribute a set of
selected objects; a 3d modeling program that allows users to select
arbitrary composite patches and apply free form deformations to
them; visual analysis software that allows users to select a subset of
data points to be re-plotted along different dimensions. All of these
multi-selection tools allow users to modify selected elements, but
none of them allow users to identify and manipulate selections that
already exhibit specific structural characteristics. To take a specific
example, suppose we want to create a transient distribution wid-
get. The widget might interpret a selected set of elements as having
an inter-element distance parameter that can be adjusted to change
the horizontal spacing of the selection; depending on the design,
we might do so by requiring elements to begin the manipulation
evenly spaced, or by measuring the average inter-element spacing.
The standard horizontal distribution tool applies an operation to ar-
bitrary selections to make them be evenly horizontally distributed,
rather than allowing manipulation according to existing, apparent
structural characteristics—the core idea of transient widgets.

Transient Widgets in Lillicon

Lillicon supports three types of transient widgets, blobs, strokes and
rectangles, each of which corresponds to a different interpretation
of the drawing. To use a transient widget, the user selects a set
of points on the contours of the drawing which separate black and
white regions. Lillicon attempts to interpret the selection based on
the widget type, and if successful, the system visualizes the inter-
pretation and generates contextual manipulators in the UI. Here, we
describe blob, stroke and rectangle widgets, detailing their parame-
ters and manipulations.

Blob. A blob rep-
resents a roughly
symmetric disk-like
region with no particular
anisotropic bias. The
widget exposes a single
parameter: an average
radius. By manipulating
the radius, blobs can be
scaled. A blob can also be deleted, which flips the contained area
from black to white or vice-versa. As shown on the right, Lillicon
visualizes a blob as a highlighted disk with an indicated center
point. A slider for manipulating the radius appears alongside the
blob.

Stroke. A stroke represents a path-like re-
gion bounded on two sides. The “path” in
question may be open or closed, straight or
bent. The widget exposes an average width
that allows the stroke to be thickened or
thinned. As with blobs, a stroke can be
deleted. As shown on the right, Lillicon
visualizes a stroke as a highlighted region,
with 3 paths traced over it: the two opposite
sides and a middle path traveling between
the two of them. A slider for manipulating
the width appears beside the stroke.

Rectangle. A rectangle represents a col-
lection of contour points that roughly ap-
proximate an axis aligned rectangle. Rect-
angles may possess rounded corners, gaps,
or other abnormalities. The widget has four
parameters: average left, right, top, and
bottom coordinates. All of these param-
eters can be dragged as if manipulating a
rectangle object in a conventional vector
editing tool. As shown on the right, Lillicon
visualizes rectangle widgets with a rectan-
gular outline and 8 square handles.

4 Lillicon Implementation

Lillicon uses a constraint-based editing approach to (1) enforce
an automatic set of useful constraints as the user edits a drawing,
and (2) expose useful parameterizations of the underlying space of
drawings. Before we discuss the implementation of transient wid-
gets proper, we describe how this constraint engine works.

Input Format. Lillicon reads SVG files containing collections of
cubic Bezier curve paths describing a region of the plane to color
black (holes in regions are handled according to the standard).
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If icons failed to conform to this representation, whether due to
stroked paths, shape primitives or any other issue, we converted
them into this format while preserving their rendered appearance.
After converting all input to cubic Bezier curves, we automatically
detect almost-arc curves and replace them with rational quadratic
Bezier curves capable of representing arcs exactly. At this point,
the icon is reduced to a set of closed contours, each consisting of a
circular sequence of arc or (cubic) Bezier segments. For simplicity
of exposition, we’ll assume all segments are cubic Beziers in the
following. Corrections for arcs are provided in the appendix.

4.1 Differential Manipulation

Differential manipulation[Gleicher and Witkin 1991a] is a tech-
nique for maintaining arbitrary (potentially non-linear) constraints
on a drawing. Differential manipulation is particularly notable
for framing constraint-based drawing as a constraint maintenance,
rather than a constraint satisfaction problem. Numerically, this
means posing a constrained integration problem, rather than a
search problem. Since integration is still tractable in the pres-
ence of non-linear (e.g. geometric) constraints, this formulation
of constraint-based drawing is well suited to our purposes.

We review our implementation here, but a detailed discussion may
be found in Michael Gleicher’s thesis[Gleicher 1994]. Let σ ∈ Rn
be a state vector describing the drawing. Since our drawing is de-
scribed by a collection of Bezier curves, σ is simply a concatenation
of the 2d coordinates for each control point. Constraints are formu-
lated as differentiable functions of the state gi(σ) = 0. We require
that a constraint can only be added if it holds for the current state.
As a result, σ is always trivially a solution to ∀i : gi(σ) = 0. In
the differential manipulation framework, we instead define how to
move between nearby states satisfying the constraints. That is, we
define how to integrate on the manifold of admissable states.

Figure 9: A visual explanation of differential manipulation. This
drawing can be encoded via coordinates for 14 control points as
σ0 ∈ R28 (blue). The user proposes an edit δ by dragging (red).
This edit is projected into π in the tangent space of the constraint
manifold (yellow). Finally, gradient descent finds a point on the
constraint manifold σ1 to use as the next drawing state (green).

Consider a user dragging a control point from position (x0i , y
0
i )

to position (x1i , y
1
i ). This edit can be described with the vector

δ = (0, . . . , x1i − x0i , y1i − y1i , . . . , 0). Generally, let δ ∈ Rn be
a vector based at some initial state σ0, so that δ describes the de-
sired direction to move in. A priori, δ may not be tangent to the
manifold of admissable states (e.g., we cannot move the control
point alone without violating some constraint). Consequently, we
first project δ into the tangent space via a linear system solve. Let
Jij =

∂
∂σj

gi(σ
0) be the constraint Jacobian at σ0. Then let π ∈ Rn

be the solution to the underdetermined system Jπ = 0 that mini-
mizes ||δ − π||2. We solve for Lagrange multipliers via the normal
equations JJTλ = Jσ0, using a conjugate gradient solver. Given
the Lagrange multipliers, we construct π = δ − JTλ. Once pro-
jected, the point σ0+π is much closer to the admissable state man-

ifold, but probably lies some distance away due to non-linearities.
To snap back onto the manifold, we apply naive gradient descent
(with 50 iterations) to the energy ||g(x)||22. This solution scheme
follows the original paper[Gleicher and Witkin 1991a] but could be
replaced by more sophisticated integrators.

Inferred Constraints. Part of our motivation for using a con-
straint engine was to reduce the number of low-level secondary ed-
its required of users. In order to do this, we automatically detect
and enforce a set of standard constraints on the drawing: straight
lines remain straight; vertical and horizontal straight lines remain
vertical and horizontal; groups of horizontal and vertical lines at
the same x or y coordinate remain grouped; and C1 and G1 con-
tinuity is enforced at anchor points between bezier curves. Details
are provided in the appendix.

4.2 Extending Manipulation with Measurements

Differential manipulation allows us to edit subject to constraints,
but it doesn’t help us figure out how to translate actions (thicken
stroke, scale blob, etc.) into edit vectors δ. To do that, we need
a way to expose different useful parameterizations of the space of
drawings. Gleicher developed a sophisticated automatic differen-
tiation scheme (what we might call a domain-specific language to-
day) called snap-together-mathematics[Gleicher and Witkin 1991b]
to solve this problem. Rather than reimplement his approach, which
involves constructing and maintaining arithmetic circuits/functions
of the underlying state vector, we simply augment the state vector
with new variables and constrain them to behave as reparameter-
izations of the existing variables. While our method, which we
call measure-and-reify, does not have any more expressive power
than snap-together-mathematics, we found it to be an expedient ap-
proach for linking transient widget parameters to the constraint sys-
tem

A measurement is any differentiable function of the state vector
φ(σ) ∈ R. Given a measurement function, we can reify that
measurement by introducing a new variable x, initializing it to
value φ(σ) using the current state, and adding a constraint function
g(σ, x) = φ(σ) − x. For example, we could introduce a measure-
ment function that computes the distance between two points and
then reify the measurement by creating a distance variable, initializ-
ing its value to the current distance, and adding the appropriate con-
straint function to the system. Importantly, reified measurements
will never increase or decrease the underlying degrees of freedom
in the system. Rather, these state augmentations just expose differ-
ent parameterizations of the same underlying space. As a result, it
becomes trivial to (1) apply differential manipulation to adjust the
measured quantities, (2) take further measurements from existing
measurements, (3) add constraints that involve measured quantities.

Polygonal Proxy. The first and most basic set of measurements
we take defines polygonal proxies for the underlying contour
curves. Measurements allow our state vector to link and simulta-
neously maintain these two redundant representations of our draw-
ing (polygonal proxies and Bezier curves). First, we compute a
uniform distribution of points along each contour curve segment.
Each of these points has a constant parameter value ti, from which
the point’s coordinates can be computed using the standard Bezier
curve function, which is a linear interpolation of the control points.
Consequently, we can measure and reify the point coordinates
(xi, yi) = B(Pi, ti). While the purpose of the polygonal proxy is
to expose a representation for the transient widgets to attach to, one
immediate benefit is to allows users to edit the drawing by dragging
any of these (densely) sampled contour points of the drawing.
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4.3 Transient Widget Implementations

The implementation of transient widgets involves two steps. First,
the system analyzes the user-specified selection to determine
whether the relevant interpretation is valid. For valid selections, the
system then reifies the appropriate measurements to support differ-
ential manipulation of those parameters.

Before describing the details of these two steps for each widget,
we note that Lillicon allows users to form selections by dragging
out rectangular axis-aligned marquees. Any point of the polygo-
nal proxy within the rectangle is added to the selection. Holding
a modifier key allows points to be added/removed from the current
selection so that users can build arbitrary selections. Once a selec-
tion is formed, it becomes a widget proposal.

Blob

Interpretation. Since a blob must represent a genus 0 region of
the drawing, (excluding any internal contours) interpretation starts
by connecting the selected contour points together into a loop. To
begin, if an entire contour loop is selected, either we’re done find-
ing a loop, or we’ve found multiple loops (and therefore reject the
selection). If no entire contour loop has been selected, then the
first step is to run the loop closure algorithm from the appendix to
produce a candidate loop. Lillicon then puts this loop through a
series of filters to determine whether or not the proposed loop actu-
ally represents a valid region of the drawing: that the loop does not
intersect itself, intersect unselected contours, or contain any other
contours within itself. Finally, since blobs are intended to be rela-
tively isotropic, we run PCA on the selected points and reject the
selection if the two eigenvalues differ by more than a ratio of 3 : 1.

Manipulation. We measure the blob’s center (cx, cy) as the av-
erage of all the points in the selection, and the blob’s radius r as
the average distance between this center and each selection point.
Dragging the slider widget scales the blob by dragging this exposed
radius parameter.

Deletion. To delete a blob, we first add to the drawing any seg-
ments of the selected loop that were not already edges of the polyg-
onal proxy contours. (This may involve splitting the underlying
Bezier curves.) Then, we remove all other segments of the selected
loop. These operations effectively flip the blob region from black
to white or vice versa. Whenever a deletion operation is performed,
Lillicon re-infers constraints for the entire drawing and reconstructs
a new polygonal proxy.

Stroke

Interpretation. Stroke interpretation begins the same way as blob
interpretation: forming a loop, except strokes allow for up to two
loops to be extracted. In the case of two loops, we check to make
sure they are nested: i.e. represent a genus 1 region. Given a genus
0 or genus 1 region, Lillicon then triangulates the region using Tri-
angle[Shewchuk 1996]. If the region is genus 0, then the dual-graph
of this triangulation is guaranteed to be a tree; if genus 1, then it’s
guaranteed to contain exactly one cycle. If the region is genus 0,
then we extract the maximum length path through the tree; if genus
1, we extract the unique cyclic path. Given a dual path through the
triangulation, we can now assign two “sides” to the selection, and
for each triangle define its apex vertex and base vertices. In the case
of genus 0, we can also assign two ends to the selection: the two
edges of the last triangle on each end of the path that don’t connect
to another triangle on the path. As a final filter, we check that the
extents of the two ends of the stroke are within a 3 : 1 ratio of each
other, and likewise for the lengths of the two sides.

Manipulation. We measure the width of the stroke in two steps.
First, we measure and reify the height of each triangle using the
base/apex distinction. Then, we measure and reify the average
height of the triangles. We call this average height the width and
translate dragging on the slider into dragging this parameter of the
drawing.

Deletion. Stroke deletion is identical to blob deletion.

Rectangle

Interpretation. The rectangle widget’s selection mechanism is a
rectangular annulus, whose thickness is controlled with a sidebar
slider. This annulus partitions the points selected into 4 overlap-
ping groups: the left points, the right points, the top points, and the
bottom points. If any of the four groups are empty, the selection is
rejected as a rectangle.

Manipulation. To manipulate the selected rectangle, we first
compute an average x coordinate for the left and right sets of points,
and an average y coordinate for the top and bottom sets of points.
These coordinates are reified as four individual measurements. As
the user drags the corner or side handles of the rectangle widget, we
apply differential manipulation to adjust the corresponding rectan-
gle parameter(s).

5 Qualitative Evaluation

Figure 10: The Prototype Interface. The main canvas (center) is
where the user edits the icon by dragging contours, and selecting
points to form transient widgets. Here, a stroke widget has been
formed, exposing a slider to manipulate the width. The miniviews
(left) allow the designer to instantly observe the icon at different
scales. The widget-mode buttons (top right) let the designer con-
strain which widgets the system will try to form from a selection.

To evaluate whether transient widgets are useful for creating scale
variations, we recruited 4 professional designers (3 male, 1 female)
who had no previous knowledge of our project to participate in an
exploratory study. All the designers either create icons currently as
part of their work, or have done so in the recent past. We brought
each participant into the lab, introduced the features of Lillicon, and
after a brief warmup task, we asked them to create smaller scale
versions of two icons taken from Iconic (Figure 11g,h). We chose
simple icons to prevent participant exhaustion. For each icon, par-
ticipants first made the edit using Lillicon1 and then performed the
same edit again using their preferred vector editing tool; one de-
signer used Adobe Fireworks, one used the vector tools in Adobe

1Given our small number of participants, we chose this order so that
learning effects worked against Lillicon.
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Photoshop, and two used Bohemian Sketch. Before each editing
task, designers examined the small scale Iconic version of the icon
to familiarize themselves with the desired modifications. At the
end of the session, we conducted an exit interview where we asked
participants to compare their experiences with Lillicon and their
preferred tool.

Figure 10 shows the Lillicon interface that participants used for the
study. In addition to the features described in the caption, the main
canvas supports zoom and pan. The entire system also supports an
unlimited undo feature. If the user does not explicitly select one of
the widget-mode buttons on the top right, Lillicon tries to interprets
each selection first as a stroke, and then as a blob, if the stroke is
rejected. The version of Lillicon that we used for the study did not
include the rectangle widget, since it was not available at the time.

5.1 Findings

Not surprisingly, we observed very different editing strategies for
the two conditions. With Lillicon, all participants made extensive
use of the stroke and blob widgets to adjust icon proportions. In
some situations, the designers used the widgets in very consistent
ways; they manipulated the circular heads of the Music Notes as
blobs and the right-angled hairline near the top of the Script as a
stroke. However, there was more diversity in how the designers
chose to edit other parts of the drawings. For example, partici-
pants thickened the top beam and two vertical stems of the Music
Notes using a variety of strategies: manipulating the parts inde-
pendently as three separate transient strokes; thickening them as a
single stroke; thickening the two vertical stems as stroke and then
directly dragging the top and bottom contours of the beam to adjust
its weight. In the Script icon, participants increased the negative
space at the bottom left of the scroll either by treating the white re-
gion as a transient stroke and thickening it, or by directly dragging
the contours of the black region to create more negative space.

With their preferred tool, participants primarily resorted to manip-
ulating Bezier curve control points. As professional designers, they
were all very familiar with Bezier curve representations. Still, for
every task, participants had to carefully inspect the control point
layout and often do some initial trial-and-error modifications to de-
termine a specific strategy to pursue. Moreover, even though they
are all clearly proficient with their preferred tools, participants ap-
peared to have some difficulty executing certain edits using Beziers.
Two of them resorted to redrawing portions of the icon rather than
make secondary edits to control point handles (e.g., to preserve
arcs). The other two designers used Bezier editing exclusively to
complete the tasks, but they often performed a significant amount
of trial-and-error editing to determine which specific subsets of con-
trol points to manipulate to achieve the desired adjustments.

There are a few common themes in the feedback from the exit in-
terviews. The consensus was that transient widgets made it easier
to perform editing operations compared to existing vector graphics
tools. Three participants elaborated by saying that they liked how
transient widgets enable them to treat different selected regions as
either strokes or blobs without having to understand or rely on the
underlying representation of the drawing. By contrast, editing with
existing tools forced them to consider the specific configuration of
Bezier control points or whether an apparent stroke is in fact rep-
resented with an explicit stroke primitive. On the other hand, all
the designers mentioned that they liked having the option of per-
forming the type of precise edits that they are able to achieve with
their preferred existing tools. To this end, they felt Lillicon would
greatly benefit from features like shortcut keys for quickly zoom-
ing the view, a pixel grid, and units of measurement for transient
widget parameters (e.g., this stroke should be 5px wide). All par-

ticipants felt that the editing features in Lillicon would be useful
in the icon scaling process, perhaps as part of a more full-featured
vector graphics tool that also supports more precise, low-level edit-
ing.

Two participants mentioned that they were sometimes surprised
by how the system interpreted their selections. There were some
false positives where designers were surprised that Lillicon formed
a widget for a given selection. For instance, when selecting a set of
contour points on the top of the Music Note to collectively drag, the
user was surprised to see Lillicon form a stroke widget. There were
also cases where the user did not explicitly select the widget-mode
and Lillicon formed a stroke widget when a blob was expected. In
both of these cases our widget visualizations seemed to help partici-
pants identify the interpretation error, confirming our design goal in
providing visual feedback. On the other hand, participants did not
receive any feedback for false negatives where Lillicon rejected a
selection that the designer expected to form a widget. For instance,
the ratio filter (§4) on stroke endcaps sometimes prevented seem-
ingly reasonable stroke selections from forming. False negatives
were a more common source of frustration than false positives.

While we did not design our study to allow for direct comparisons
between the task completion times for the two conditions (the order
of conditions was fixed, so learning effects for each icon may have
come into play) we can report that participants were 1.5–5 times
faster using Lillicon in half the tasks and roughly 1.2 times faster
using their preferred existing tool in the other half, with median
completion times of 134 seconds for Lillicon and 210 seconds for
the existing tool. We find these completion time results encouraging
for two reasons. First, Lillicon lacks many common features like
keyboard shortcuts and text entry fields for setting parameters that
can have a significant impact on user efficiency for editing tasks.
Moreover, there was a massive gap between the two conditions in
terms of familiarity; while participants were asked to use Lillicon
for the first time, they all have an extremely high level of expertise
with their preferred tools.

6 Results

In addition to soliciting feedback from icon designers, we used Lil-
licon to generate scale variations of several icons from our dataset
to get a sense for the generality and limitations of our approach.
Figures 1 and 11 show some of our results, and our submission
video includes editing sessions for additional icons. Creating these
scale variations involved 2–10 transient widgets and a few contour
dragging operations. The edits for each result took between 1 and
5 minutes to perform.

Overall, we found transient widgets especially useful for editing
icons with compound shapes composed of several apparent parts.
For example, the Music Notes (Figure 11g) are composed of two
circular blobs at the ends of two vertical stems connected by a
curved bar across the top, and the Car (Figure 11d) has a thin hair-
line around the windshield that merges into the body. Since such
parts are not typically represented as separate, discrete objects, they
are hard to manipulate independently with existing tools. With tran-
sient widgets, we can select and edit each part separately to adjust
their relative proportions.

Transient widgets are also very helpful for manipulating negative
space. In several of the icons in Figure 11, the gaps between ob-
ject contours form visually apparent strokes and blobs that are not
represented as objects. Modifying such gaps with existing tools
requires a significant amount of low-level editing of the contours
themselves. In contrast, transient widgets allow us to select nega-
tive hairlines and blobs and then modify their parameters.

7
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(e) Temple (�aticon-monuments)

(b) Lock (iconsolid-security)(a) Book (iconsolid-multimedia) (d) Police (�aticon-humans)

(f ) Postage (�aticon-computer) (h) Script (Iconic)(g) Music Notes (Iconic)

(d) Car (iconsolid-object)

Stroke Blob Rect

Contour DeleteTranslate

Figure 11: Results generated with Lillicon. These eight icons were edited using Lillicon to produce scale variations suitable for display at a
small size. (Music Note and Script were used in our study.) For each result, the first two columns show the original (top) and edited (bottom)
icon at the target size and enlarged. In the top right is a visualization of which Lillicon editing tools were applied. As noted in the legend, the
colors indicate the type of widget, and the border of each colored region indicates how the widget was used. If the widget has no border or a
solid border then the widget parameters were also adjusted. We use orange lines to indicate where contours were directly dragged. Finally,
the bottom right image superimposes the input and output drawings to make the differences easier to see.

While we mainly used the stroke and blob widgets, the rectangle
widget was useful for manipulating “irregular” rectangular regions,
such as the notched frame of the Postage icon (Figure 11f). Here,
we applied two rectangle widgets: one to shrink the inner boundary
and one to expand the outer boundary. As we expand the outer
boundary, the notches retain their semi-circular shape.

7 Related Work

7.1 Icons and Scaling

While most classical work on image scaling (i.e. signal-processing
theory) tries to preserve proportionality across different scales,
there is also a substantial amount of work on scale-sensitive varia-
tion. For instance, retargeting methods (i.e. changing aspect-ratio)
have been proposed for image processing[Rubinstein et al. 2010;
Huang et al. 2009] and even 3d geometry[Kraevoy et al. 2008].
While much of this body of work is less applicable to the problem of
uniform rescaling, it does emphasize the importance of preserving
certain features and/or proprtions. For instance, Setlur et al.[2005]
created retargetable vector animations by relying on the hierchical
structure of a scene graph/SVG file, along with user-provided im-
portance annotations. Content-adaptive image downscaling[Kopf
et al. 2013] provides an automated method for uniform downscal-
ing, but was expressly not designed to handle legibility objectives
like font hinting.

The body of work on automatic font-hinting[Hersch and Betrisey
1991; Zongker et al. 2000; Shamir 2003] is probably closest in spirit
to our focus on the legibility of small scale images. In contrast to

the font hinting line of work, we aim to provide interactive tools
that help designers create scale variations. While automation may
ultimately be possible, our investigation suggests that experienced
designers make many subjective judgements (based on their exper-
tise) to create high quality small-scale images. Moreover, many of
the designers we spoke with preferred to retain authorial control
over the process.

Most academic work on icons focuses on which qualities make
icons effective, rather than the design process itself. For instance,
Kineticons[Harrison et al. 2011] explores the design space of ani-
mated icons. A smaller set of work also focuses on the autogen-
eration of memorable[Lewis et al. 2004] or semantically appropri-
ate[Setlur and Mackinlay 2014] icons.

7.2 Transient Widget Precursors

Transient widgets are hardly the first attempt to resolve representa-
tional issues in drawing and modeling tools. Skeletal Strokes [Hsu
et al. 1993; Hsu and Lee 1994] described an authoring paradigm
where stroke objects are used as a 2d rigging system for creating
drawings and animations. Unlike Skeletal Strokes, which are a pre-
scription for how to build and represent drawings, transient stroke
widgets are a way to interpret parts of already existing drawings.
Reverse engineering methods like GlobFit[Li et al. 2011] do work
with existing objects, decomposing shapes into Boolean combina-
tions of parametric primitives. However because they must infer
one “true” representation, these methods are ill-posed for accomo-
dating the multiple interpretations a user may form. Lillicon can
be seen as supporting a specialized form of a planar map represen-
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tation[Baudelaire and Gangnet 1989; Asente et al. 2007; Dalstein
et al. 2014], which are also focused on resolving subtle violations
of the WYSIWYG principle. Transient widgets are a natural means
of recovering objects that remains consistent with the philosophy of
this approach.

Transient widgets are reminiscent of Eric Saund’s work on
perceptually-based editing of free-form sketches[Saund and Moran
1994; Saund et al. 2003], which proposed a what-you-perceive-is-
what-you-get tool for pen-based computing. Saund also abandoned
the traditional object/vector-based representation of drawings, but
was primarily focused on issues of gestalt perception; so his work
was focused on selection and grouping mechanisms. Transient wid-
gets are instead (a) primarily about manipulating “objects” and (b)
defined by use rather than perception; if you can edit it like a stroke,
then it’s a stroke as far as we care. However, Saund’s work and Lazy
Select[Xu et al. 2012] could be very useful for improving Lillicons
selection mechanisms.

7.3 Constraint-based Editing

In the last decade, geometry researchers explored a wide variety of
deformation criteria[Botsch and Sorkine 2008], but mostly did not
address the problem of editing with constraints. iWires[Gal et al.
2009] is the notable exception. Like iWires, we found that a small
set of easy to detect features yielded a large benefit during editing.
However, we chose to use Gleicher’s systematic approach rather
than the ad-hoc solver described in iWires.

There is a long history of constraint-based editing going back
to Sutherland’s Sketchpad [Sutherland 1964]. We directly lever-
age Gleicher’s thesis work[Gleicher 1994], which was used to
build the constraint-driven object/vector-based drawing system
Briar[Gleicher 1992]. Though Lillicon is built on the same tech-
nical framework, it explores a different space of editing ideas and
issues. Briar focused on constraint-maintenance and snap-dragging
interactions, while Lillicon hides constraint specification and main-
tenance from the user. Briar retains the layered primitive parametric
object representation, while Lillicon relies on transient widgets. Fi-
nally, we note that while we only rely on the most basic integration
scheme proposed by Gleicher[1991a], he later proposed more so-
phisticated numerical techniques, including support for inequality
constraints.

8 Limitations

The designers who evaluated Lillicon did not feel comfortable giv-
ing up access to the existing, precise, low-level tools that they were
accustomed to (e.g., Bezier curve tools). While it was not practical
for us to implement all such features in Lillicon, our system design
approach of using multiple constraint-linked representations makes
it possible to integrate transient widgets into existing, fully-featured
vector graphics tools.

Designers also complained about unexpected behavior when trying
to form widgets. We could probably improve our widget interpre-
tation algorithms to better anticipate the user’s intention. However,
the results of our study indicate that providing better visual feed-
back is a more effective and necessary mechanism for improving
predictability and reducing frustration.

Finally, in our constraint engine, we use an L2 metric over the en-
tire state vector, including measured parameters, when updating the
drawing. This can sometimes lead to unintuitive behavior where
portions of the drawing shift in unexpected ways to minimize en-
ergy associated with invisible parameters. One solution is to impose
the metric only on the part of the state corresponding to the polyg-

onal proxy. However, rather than further mimicing Gleicher’s orig-
inal work, we believe there is an interesting opportunity to merge
constraint-based editing with the last decade of work on surface de-
formation energy models. Perhaps an L1 or harmonic metric would
result in better constrained editing behavior.

9 Conclusion & Future Work

In this research, we conducted a detailed investigation of an im-
portant design task: creating icon scale variations. By framing this
problem as a question of designer augmentation rather than replace-
ment, we arrived at the idea of transient widgets as a flexible mech-
anism that enables common scaling operations. Building on this
foundation, we see a number of promising avenues for future work.

One immediate opportunity is to consider smarter selection mecha-
nisms for forming transient widgets. As discussed in §8, better wid-
get interpretation algorithms and visual feedback would be helpful.
However, extending Lillicon to support more complicated selec-
tions of multiple widgets at once may have an even bigger impact.

Another interesting question to consider is whether we can further
abstract and automate the icon scaling task. Even if the results
aren’t perfect, functionality to automatically produce scale varia-
tions of an icon and/or an entire icon set would be very useful.
However, extending the spirit of the approach we took to that level
of task abstraction is far from trivial. How do we keep the designer
in control? How do we deal with the inevitable failure of automatic
mechanisms? How can the user understand how and why the sys-
tem behaves the way it does?

Finally, while we chose to focus on the icon scaling stage of icon
design, there are also significant opportunities to help designers
during earlier stages of icon design, or to apply these tools to other
tasks. In those contexts tools oriented towards exploring unex-
pected variations on a candidate design could be tremendously use-
ful. Investigating this new set of task requirements would likely
yield further insights. Meanwhile, trying to extend a tool like Lilli-
con to support such constructive and exploratory tasks seems likely
to produce further exciting tools for object creation and manipula-
tion.

Acknowledgements

We would like to thank Isabelle Landthaler and Shawn Cheris for
explaining various aspects of the icon design workflow, Nathan
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A Arcs and Constraints

Arcs via rational quadratic Bezier curves. Let P0, P1, P2 be
the three control points of a rational quadratic Bezier curve and
w0 = 1, w1, w2 = 1 be the three weights on those control points.
For reference, a point at parameter value t is given by the formula
A(t) =

∑
i
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2
i

)
wi
4
Pi/

∑
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)
wi
4

. Aside from constraining w0 and
w2, further enforce the constraint that P1 always lies on the bisector
of P0 and P2. Now, given the 3 control points, and the constraint
that the curve must be an arc, it’s known that w1 is uniquely deter-
mined to be sin θ

2
where θ = ∠P0P1P2.

When adding arcs to the state vector, w1 is added along with the
control point positions. Two special constraints are added for each
arc segment. One of these is a bisector constraint. The other en-
forces the value of w1, and can be derived from the sin equality.

bisect(Pi) = 〈P1 − P0, P2 − P0〉 − 〈P2 − P1, P2 − P0〉
arcw(Pi, w1) = ||P2 − P0|| − w1(||P2 − P1||+ ||P0 − P1||)

When tangent points of an arc are needed to determine geometric
continuity at an anchor, P1 is always used.
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Constraints. Define the following constraint functions:

colinear(A,B,C) = det

∣∣∣∣ Ax −Bx Cx −Bx
Ay −By Cy −By

∣∣∣∣
eq(a, b) = a− b

eqpt(A,B) = A−B
midpt(A,B,C) = 2B −A− C

Constraints are applied to the underlying drawing using the follow-
ing heuristics

No Handle. For each cubic Bezier, if P0 =
P1 then eqpt(P0, P1) is enforced; likewise
for P2 and P3.

Straight Line. Cubic Beziers that rep-
resent straight lines are kept straight.
Specifically colinear(P0, P1, P3) and
colinear(P0, P2, P3) are enforced.

Horizontal & Vertical. If a straight line is
horizontal, then eq(P0y, P3y); similarly for
vertical lines.

Horizontal & Vertical Groups. If multiple
horizontal lines have the same y-value, then

their y-values are constrained to be equal; similarly for vertical
lines.

C1 Continuity. If two successive cubic
Beziers in a path have symmetric handles
around an anchor point, maintain the symme-
try using midpt(P ′2, P ′3 = P0, P1), where P ′i
and Pi are the control points of successive Bezier segments, with
shared anchor P ′3 = P0.

G1 Continuity. If C1 continuity does not
hold at a shared anchor point, but the handles
on either side Hin = P ′2 and Hout = P1 are
colinear with the anchor A = P ′3 = P0, then

enforce colinear(Hin, A,Hout). If either curve is a straight line re-
define the associated handle as Hin = P ′0 or Hout = P3; if it’s an
arc, then Hin = P ′1, Hout = P1.

Contiguous Curvature. Each arc in the
drawing is fit with a circle. If an arc is found
to lie on its neighbor’s circle, then we assume
the two arcs form one contiguous arc of a
common circle. In this case, we estimate the common circle’s cen-
ter and radius, add those 3 variables to the state vector and constrain
the polygonization samples from the arcs to lie on the newly repre-
sented circle. This leads to redundant constraints, which the solver
handles fine. Note that it is very important that arcs be represented
exactly as rational quadratic Bezier curves in order for adding this
constraint to be safe.

B Ad-hoc Loop Closure Algorithm

Input/output. The input is a set of “runs”, each of which is an
ordered list of points. Call the first point in a run the tail and the
last point the head. The output is a single cyclic sequence ordering
all of the input runs.

Definitions. We call any cyclically ordered sequence of runs a
loop, with the interpretation that the head of each run is connected
to the tail of the subsequent run. We call the extra line segment
introduced by this connection a gap. The length of each gap is
measured using Euclidean distance, and the cost of the loop is the
sum of its gap lengths.

Algorithm. First, convert each input run into a trivial loop by con-
necting the head of the run to its own tail. Then, we repeat the fol-
lowing until only one loop remains: find the pair of loops with a
minimal cost splice, and perform that splice. A splice is specified
by identifying a gap in each of the loops being spliced, cutting the
loops at those gaps and reconnecting them into one loop. (Because
loops are directed, the operation is unambiguous once gaps have
been specified.) The cost of a splice is the cost of the resulting loop
minus the sum cost of the two original loops. Caching is used to
save wasted computation in the search for a minimal cost splice.

Loop Filtering

Loop Closure produces a cyclic sequence, but doesn’t guarantee
non-intersection or other desirable properties. We filter the out-
put for desirable properties and fail to form transient widgets when
these filters are not passed.

No Isolated Points. All runs fed into loop closure must have at
least two points in them. (This simplifies our deletion code
by preventing the introduction of non-manifold points in our
curve representation)

No Self Intersections. If the loop intersects itself, then reject it.

No Contour Intersections. If the loop output crosses an edge of
the drawing’s polygonization that wasn’t part of a run (i.e.
if any of the new gap edges cross an edge of the polygonal
proxy) then reject the loop.

Two loops max. Only allow two loops maximum, including se-
lected closed loops and the loop produced by the preceding
algorithm.

One loop forms a disk. If there is one loop, then that loop should
not enclose any other edges from the polygonization of the
drawing.

Two loops form an annulus. If there are two loops, then one of
the loops should be enclosed by the other, and any edges from
the polygonization of the drawing should either be enclosed
in both loops or enclosed in neither. (i.e. the area between the
two loops doesn’t contain anything from the polygonization)

Warning: This loop closure algorithm produced the obvious, de-
sired closure in all situations we observed, so long as there was an
obvious way to close a sequence of runs into a loop. In other cases,
the filters ensured safety for downstream processing. However, this
algorithm was developed to get our prototype working, not because
it was particularly elegant or has any kind of robustness guaran-
tees. Future implementers would likely do just as well with another
ad-hoc method of their own.
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